
International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 273
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Agility Achievement and Load Handling System
in Fat-Tree Data Center Network

Amol Lonare, Ms. Veena Gulhane

Abstract— A multi-rooted hierarchical tree topology is most widely used in many data center networks. It provides good utilization of
resources as well as better performance, still fat tree Data Center Network has two limitations i.e traffic load balance and agility. This is
because Data Center Networks (DCN) increasingly carries larger and longer traffic flows. As a result of this it is unable to support different
traffic types efficiently and has no capacity to access all services by all servers. A work has done previously on load balancing, yet agility
has not been solved. In this paper the Agility Handling Method (weighted least connection technique) has been implemented to achieve
Agility in Data Center network. This technique improves load handling capacity and also increases the level of performance even in a more
number of nodes in the network.

Index Terms— Fat-tree, Data Center Network, Agility, Network Utilization, Load balance, Services.

—————————— ——————————

1 INTRODUCTION
he Data Center Network is a collection of servers that
provides various services to the client’s requests. The
modern Data Center Network is a hierarchical network

provides 1+1 redundancy. The equipment higher in the hier-
archy handles more traffic, they are more expensive, take
more efforts to make at availability, it is known as the scale up
design. Many of today’s data center network uses fat tree to-
pology to get the identical bandwidth in the network at any
bisection.

1.1 Background
A Fat-Tree based Data Center Network comprises the racks

of servers and the servers in each rack are connected with a
Top of Rack (ToR) switch. Here each ToR switch is connected
to some aggregation switches, which again connect to top tier
in-between switches. In modern data center network servers
connect via 1 Gbps UTP to Top of Rack switches. Other links
are mix of 1G, 10G; fiber, copper. Data centers (DCs) can be of
three types private, public, or virtually private. Private DCs
are dedicated to one enterprise, and may support multi-
tenancy within the enterprise. They are interconnected over an
enterprise-dedicated private network or virtual private net-
work. Services within the private DC could remain private to
the enterprise and could be partially connected to Internet
access via secure gateways. Public DCs are connected via the
Internet and are often targeted for Internet-based services,
including multi-tenant services as well as commercial public
services. Virtual private DCs are built on a common DC infra-
structure often provided by a DC provider. Modern data cen-
ters might Contain tens of thousands of hosts for supporting
the needs of cloud computing, multimedia contents, and big
data analysis.

Many topologies and architectures are proposed to address
the various purposes and requirements such as cost reduction,
energy reduction, and support for scalability. Moreover, the
construction of a data center incurs significant costs. Further,
there are many technologies that can affect the structure of
data centers [1]. Therefore, Todays data center network uses a
multi rooted fat tree topology to build a data center network.
All currently deployed most of the Data Center Networks

(DCNs) trust on layer-3 Equal Cost Multipath routing to uni-
formly distribute traffic and utilize the gathered capacity pro-
vided by the multi-tier network. The longer and larger flow of
bandwidth characterizing different phases break the nice traf-
fic spreading provided by the ECMP hash function for many
low-bandwidth flows. Under such hash-based traffic spread-
ing, the probability of over-subscription follows the balls-and-
bins max-load distribution [1]. The contending flows result in
low effective bandwidth.

Figure 1. Example of fat tree topology

In addition to compute and storage infrastructure, services
are also offered from public and virtual private data centers
connected across the Internet or virtual private networks. In
all cases, time varying demands in terms of computing, stor-
age, connectivity, and bandwidth coupled with the need to
optimize for power consumption, cost, and resiliency requires
service provisioning agility. Existing architectures of the data
center network does not provide sufficient capability between
the servers to which they are interconnected. The Data-center
networks perform less to keep an excess of traffic to one ser-
vice from affecting others service. And the routing scheme
allocates servers topologically at significant IP address and
distributes servers among virtual local-area networks, striking
a huge configuration burden when the traffic must be reas-
signed among services. Therefore agility should be provided
in data center network.

Agility [2] property represents the ability of Server to re-

T

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 274
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

spond rapidly to the changing environment. Virtualization
will not fully deliver its promise of agility as long as networks
are statically provisioned and managed. Agility handling
method is designed to address the agility in a fat tree data cen-
ter network. This is an ability to assign any service to any
server and on the request of client any server has to provide
any service without affecting the each other’s service in data
center network.it also take care of the traffic load on network
and balance the load while providing the services.

1.2 Related Work

Many researchers has worked on fat tree based data center
network to address various limitations and handling the traffic
load in various traffic types.

For unicast scheduling, most existing data centers adopt
ECMP (Equal Cost Multi-Path) [3] scheduling, which splits traf-
fic load across multiple paths by forwarding each packet via the
path determined by a hash function of selected fields in the
packet’s header. ECMP routing is deterministic and fixed, be-
cause it is based on the constant hash functions of the flow iden-
tifier. The achieved bandwidth from these techniques is nearby
to the networks cross bisectional bandwidth when the flow
granularity is small, it means that the routing algorithm extents
many flows that are either short or of low-bandwidth.

ECMP consider the parameters throughput, traffic pattern
and flow capacity. With ECMP traffic can be distributed be-
tween the rests of the equal paths in a sub second and without
severe loss of traffic. It is used mainly on the flow level traffic
pattern.
A limitation of ECMP is that the large and long-lived (“ele-
phant”) flows navigating a router is mapped to the same output
port. This type of “collisions” can cause load imbalances into a
multiple paths and cause network bottlenecks, which results in
large bandwidth losses, also the load balancing is criticized due
to impact of rapidly changing latency.

Figure 2. ECMP Load Balance

For giving unpredictability and divergence of a traffic pat-

tern in a data center network routing protocol should be de-
signed to balance the data center traffic by fully exploiting the
path diversity in fat-tree. VLB (Valiant Load Balancing) [4] is a
simple-yet-efficient load balancing technique that performs des-

tination independent random traffic spreading across interme-
diate switches. In a data center with TCP/IP communications, it
is, however, generally believed that packet based VLB is not
suitable. The receiver generates duplicate ACKs (acknowl-
edgements) for out-of-order packet arrivals. As a result, the data
center network utilization will be significantly lowered. To
avoid the packet out-of-order problem, existing fat-tree based
data center networks adopt flow-based VLB, where the routing
objective is to balance the number of TCP flows traversed
through each switch. Since packets of the same flow always
follow the same path, there is no packet out of-order problem.
But if the traffic in a data center contains elephant flows (i.e.
large and long-live TCP flows) [5], flow based VLB schemes can
cause congestion on hotspot links. To address this issue, dy-
namic flow scheduling can be used to identify and reassign ele-
phant flows. In a central scheduler with knowledge of all active
flows is used for flow reassignment. More recently, multipath
TCP (MPTCP) [5], [6] is adopted for improving the load balanc-
ing performance in data centers.
various techniques for balancing the traffic load in Data Center
Network is used on the basis of two parameters bandwidth and
traffic flow where each technique has some limitations.

1.3 Contribution
In agility handling work we considered the three of above

limitations to overcome, first limitation is that system is not
suitable for larger and non-uniform traffic, second is increase
the packet latency and third is not work with the changing envi-
ronment. In agility handling method three parameters has been
considered bandwidth, traffic pattern and network link capaci-
ty. In a data center network many work has done to address
various limitations but no work has done to achieve the agility
in Fat-Tree Data Center Network. This is the motivation for de-
signing this agility handling system.
The paper is ordered as follows. Section II introduces a research
design of the system. In Section III, presents agility handling
work with architecture of system and load balance technique.
Section IV contains implementation guidelines for weighted
least connection method. Section V contains Impact of agility
handling system. Section VI contains outcomes of the system
and Section VII describes a discussion and conclusion

2 RESEARCH DESIGN
2.1 Objectives
In research of achieving agility and improving the traffic load
balance, the new approach has been implemented to fulfill
following objectives
The objectives of agility handling system are:
1. To achieve Agility (i.e any server has to provide any service)
in fat tree Data Center Network.
2. To provide performance isolation (i.e services should not
affect each other).
3. To improve the Traffic load balance.

2.2 Architecture
Architectural model shown in Figure 3 describes the work-

ing of agility handling system. Data center is a cluster of large

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 275
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

number of computers operated and managed by a single au-
thority. In this system first we are going to create a data center
network with minimum four servers. This data center will be
created by using a hierarchical topology. The system is divid-
ed into three parts where first part will be the data center con-
taining some nodes and each node having services in it. Se-
cond part will be the centralized server called balancer; it will
handle the load and address the agility in data center network.
Third part will be the client which will access services from
defined servers. Here client will sent the request to server to
get the service and server will send the reply to clients request,
this is the normal flow of network. When number of clients
will send the request at the same time to the same server then
load balancer will check out the traffic on server side. If there
will be more requests to the same server immediately it will
transfer to the nearby server not having more traffic to reply
with the same service.

2.3 Routing in Fat-tree
Without loss of generality, we consider a three-layer fat-tree
[7] constructed using port commodity Ethernet switches and
bidirectional links, as shown in Fig. 1.

It can be seen that at each layer of the tree, the number of links
connecting to the next layer is the same, giving a constant
bandwidth between layers. The core layer has switches, and
the aggregation and access layers have switches each. The
switches at aggregation and access layers are grouped into
pods, and each pod supports servers. The fat-tree as a whole
supports servers using port switches. For inter-pod communi-
cations, e.g. between servers say A and D (if A,B,C,D are at
bottom layer), there are 6-hop paths. For intra-pod communi-
cations, there are 4-hop paths if the two servers are not con-
nected to the same access switch (e.g. servers A and C); other-
wise, there is only one 2-hop path (e.g. servers A and B). Rout-
ing a packet in fat-tree consists of two phases: up routing and
down routing. In the up routing phase, a least common ances-
tor (i.e. a turning switch) of the source and the destination is
determined. If there are more than one candidates, e.g. there
are 4 candidates from source A to destination D, the selection
is based on the specific routing algorithm adopted. If a turning
switch is chosen, the path from the source to it, as well as the
path from it to the destination, becomes unique. To exploit the
path diversity, load balancing is performed during upstream
routing, which can be either packet-based or flow-based.
Flow-based VLB [8] aims at spreading TCP flows evenly
among upstream aggregation and core switches. Although
multiple paths exist, packets of the same flow can only follow
the same selected path (i.e. the path selected for the first pack-
et of the flow). Due to the coarse load balancing granularity, it
is difficult for flow-based VLB to fully utilize the fat-tree’s full
bisection bandwidth. Therefore least weight connection rout-
ing is chosen to fully utilize the bandwidth.

2.4 Agility and load balance
Figure 4 shows the flow of load balancing and agility method.
Load balancing [9] allows distributing client requests through
multiple servers. Load balancers also improve the fault toler-
ance of server and end-user response time. This Load balanc-
ing technique distributes client requests into multiple servers
to optimize resource utilization. In the case where the limited
numbers of servers are used to provide service to a large
number of clients, hare servers become overloaded and reduce
server performance. This Load balancing is used to prevent
the bottlenecks by sending the client requests to the servers
which is best suited to handle them.
To address the agility and balance the load in agility handling
system we are going to use load balancing method named
weighted least-connection [10]. The weighted least-connection
scheduling is the higher than the least-connection scheduling
algorithm and here we can assign a performance weight to
each real server. The servers having a higher weight value will
accept a larger percentage of active networks at any one time.

Fig. 3 Architecture of agility handling system

Client-1 Client-2

Agility Handler & Load Balancer

DCN

Server-2 Server-3

Client-3

Server-1 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 276
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

The default server weight is one, and Administrator or Load
Balancer can assign any weight to real server. And in a
weighted least connection scheduling algorithm, the new net-
work connections are assigned to the server that has the very
least ratio of current dynamic connection number for its
weight.

In a load balancing concept, the load balancers are logically
placed between the client and the server. Load balancing is
used to manage the traffic flow between the servers in a server
networks. When a load balancer is designed for using the
weighted least connection method and selects the service with
the minimum number of active connections and minimum
assigned weight for ensuring that the load of the current active
requests is balanced on the services. This scheme is the useful
load balancing scheme as it provides the best performance in a
changing environment. It is also energy efficient than the pre-
vious energy efficient [11] method.

The following example shows that how a weighted least-
connection selects a service for load balancing in a data center
network.

Consider the following three services:

• Server-1 is having 3 active transactions.

• Server-2 is having 15 active transactions.

• Server-3 is not having any of the active transactions.

The load balancer now selects the service by considering the
value (N)

Where N the number of active transactions

The requests are transferred as follows:

• Server-3 accepts the first request because here no any active
transactions are handled by the service.

Note: - The service without any active transaction is selected
first.

• Server-1 accepts the second and third requests because here
the service has the least number of active connections and so
as weight.

• Server-2 receives the fourth request and so on.

When the Server-1 and the Server-3 have equal number of ac-
tive connections, the balancer performs load balancing using a
round robin concept. Therefore, Server-3 accepts the fifth re-
quest, Server-1 accepts the sixth request, Server-3 accepts the
seventh request, and Server-1 accepts the eighth request and
so forth. Hence the work load will be reduced than the virtual
data center [12] system provides.

3 IMPLIMENTATION
In this section implementation of the agility handling system
has discussed with working of algorithm, pseudo code, exper-
imentation setup, execution and analysis.

3.1 Working of algorithm

Suppose a given server set is S = {S0, S1, ….. Sn-1},
Wi (i=1,..,n) is the weight of each server i..
 Ci (i=1,..,n) is the current connections.
ALL_CONNECTIONS is the sum of Ci (i=1,..,n),
the next network connection here will be send to the server

j, in which
(Cj/ALL_CONNECTIONS)/Wj = min {

(Ci/ALL_CONNECTIONS)/Wi } (i=1,..,n)
Since, here the ALL_CONNECTIONS is constant. Hence, in

this case it is not needed to divide Ci by
ALL_CONNECTIONS and it can be enhanced as

Cj/Wj = min { Ci/Wi } (i=1,..,n)
The scheduling gives an assurance that the server will not

be scheduled when its weight is zero.
Below given the pseudo code for weighted least connection

scheduling algorithm.
Begin
Step 1: for each j = 0 to N
Step 2: check if W(Sj) > 0
Step 3: for each i = j+1 to N
Step 4: check if (C(Sj)*W(Si) > C(Si)*W(Sj))
 Then
 j = i
 (End of if)

Step 5: return Sj;

Fig. 4 Flow of Load handling method.

No

Yes

No. of Server

Assign Weight to all

Check the Load of a server

Server1 < Serv-
er2

Check
for Oth-
er Server

Server 1

Repeat

Start

Stop
 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 277
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 (End of Loop 2)
Step 6: return NULL;
(end of loop 1)

 End

3.2 Experimental Setup
Agility handling method to achieve agility and balance the
traffic load is implemented in real time using a hardware
module. The setup of the project consist of four servers each
having four services i.e uploading ,downloading, chatting and
mailing. Each server is having its own database and many
clients can registered with each server. Here each server is
connected with other server so that it can easily divert the re-
quest of client to another server and each server can work as a
central server, this is to reduce the number of resources and
thereby reduce the cost of network.

3.3 Execution of method
For experimental execution the agility handling method is

implemented in dot net technology with SQL server as a data-
base. While execution many clients will be connected with
each server separately. Only the registered clients can access
the services. Consider the 4 clients are connected with the
server 1, 3 clients are connected with the server 2, 5 clients are
connected with the server 3 and 5 clients are connected with
the server 4. The central server will calculate the load on each
server first based on the number of active clients on respective
server. When the request is made to the server for any service
then central server will check the load on each server because
it has a record of load on each server and instantly the request
will divert to the server having minimum load. Once that
server receives the request it will be fulfilled and client will get
the service without waiting for longer time. Here the user can
check that to which server he is connected and from which
server the request have been fulfilled.
 During execution three parameters has been consid-
ered i.e bandwidth of data flow, packet loss and transmission
delay. Agility handling system gets the value of these parame-
ters from each server and calculates the average delay and
losses. These parameters are then compared with the previous
method i.e ECMP Routing and show the comparison in form
of graph.

3.4 Result and analysis
For analysis above parameters of agility handling system are
compared with the existing ECMP method. Following table
shows the comparative analysis of result.

TABLE 1

COMPARATIVE ANALYSIS OF METHODS

Parameters Methods Performance
improvement

(in %) ECMP Agility
handling
Method

Avg. Bandwidth
(in kbps)

6189 5933 4.13

Avg. Packet la-
tency (in ms)

2289 2158 5.72

Avg. Transmis-
sion Delay (in
ms)

2289 2158 5.72

The graphical representation of the analysis of agility handling
method is shown in following graphs. The graph shows that
agility handling method is better than the existing ECMP
technique.

The average bandwidth of DCN using agility handling meth-
od has been improved by 4.13 percent than old method.

Fig. 5 analysis of average bandwidth

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 278
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

The average latency of DCN using agility handling method
has been improved by 5.72 percent than old method.

The average delay of DCN using agility handling method has
been improved by 5.72 percent than old method.

4 IMPACT OF AGILITY HANDLING SYSTEM
The agility handling system has created an agile data center
network which provides any service by any server without
affecting the each other’s services. Through this system clients
get the fast response of their requests. The network is flexible
and works in a changing environment. This agility handling
system provides an improved performance of data access in
organization also various big data applications are handled by
Data Center Network. It gives the customer the impression of
having infinite resources that can raise and contract whenever
they want, and it gives us the ability to distribute that at a very
low cost.

5 CONCLUSION
In this project a new technique has been implemented to

achieve agility in a fat-tree based data center network. To
achieve agility, the weighted least connection technique has
been adopted, which also balances the load in a fat-tree data
center network. So it is concluded that this system achieved
agility in a Fat-tree Data Center Network and make DCN able
to provide any service by any server as per client’s request.
The system is also checked for the performance isolation and it
is found that during the fulfillment of client’s request no ser-
vice has been affected by any other service, hence it provides
performance isolation. While achieving agility in DCN, traffic
load has distributed among servers and load handling capaci-
ty has improved. In Agility Handling System, bandwidth is
improved by 4.13 %, latency is improved by 5.72% and trans-
mission delay is improved by 5.72%, thus the overall perfor-
mance of system is improved by 5% as compared to ECMP
system. Hence the Agility Handling System will be helpful to
reduce the data Centre cost and resource utilization.

ACKNOWLEDGMENT
The research work presented in this paper has done by Amol
Lonare, a student of final semester computer science and en-
gineering. The agility handling research work has been com-
pleted under the guidance of Prof. V.A. Gulhane. The agility
handling method has been implemented and tested by using
the hardware modules.

REFERENCES
[1] Zhiyang Guo, Jun Duan and Yuanyuan Yang, “On-line Multicast

Scheduling with bounded congestion in fat-tree data center
networks,” journal on selected areas in communications, vol. 32, no.
1, 0733-8716/14 IEEE 2014

[2] Eitan Zahavi, Isaac Keslassy, and Avinoam Kolodny, “Distributed
adaptive routing convergence to non-blocking dcn routing
assignments,” journal on selected areas in communications, vol. 32,
no. 1, 0733-8716/14, IEEE 2014.

[3] yoonseon han, sin-seok seoy, chankyou hwang, “flow-level traffic
matrix generation for various data center networks ,“ 978-1-4799-
0913-1/14,IEEE 2014.

[4] pi-chung wang , “scalable packet classification for datacenter
networks ,“ journal on selected areas in communications, vol. 32, no.
1, 0733-8716/14, IEEE 2014.

[5] andres ferragut and fernando paganini, “network resource allocation
for users with multiple connections: fairness and stability ,“
transactions on networking, vol. 22, no. 2, 10.1109/tnet.2013.2251896,
IEEE 2014.

[6] jijun cao, kefei wang, xin wang, “back-track routing for fat-tree based
data center networks, “ international conference on cloud computing
technology, 978-0-7695-5095-4/13, IEEE 3013.

[7] zhiyang guo, jun duan and yuanyuan yang, “Oversubscription
Bounded Multicast Scheduling in fat-tree data center networks ,“
27th international symposium on parallel & distributed processing,
10.1109/ipdps.30, IEEE 2013.

Fig. 6 Analysis of average packet latency

Fig. 7 Analysis of average packet latency

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 279
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

[8] ali munir, ihsan a. qazi, zartash a. uzmi, aisha mushtaq, “minimizing
flow completion times in data centers ,“ proceedings ieee infocom
978-1-4673-5946-7/13- IEEE 2013.

[9] fung po tso, dimitrios p. pezaros, “improving data center network
utilization using near-optimal traffic engineering,” ieee transactions
on parallel and distributed systems, vol. 24, no. 6, 1045-9219/13, june
2013.

[10] yu cao, mingwei xu, “dual-nat: dynamic multipath flow
scheduling for data center networks, “ 978-1-4799-1270-4/13 IEEE
2013.

[11] hao jin, tosmate cheocherngngarn, dmita levy , “joint host-network
optimization for energy-efficient data center networking,“ 27th
international symposium on parallel & distributed processing, 1530-
2075/13 IEEE 2013.

[12] yiduo mei, ling liu, xing pu, sankaran sivathanu, and xiaoshe dong ,
“performance analysis of network i/o workloads in virtualized data
centers,“ transactions on services computing, vol. 6, no. 1, 1939-1374
IEEE 2013.

IJSER

http://www.ijser.org/

	1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Contribution

	2 Research Design
	2.1 Objectives
	2.2 Architecture
	2.3 Routing in Fat-tree

	3 Implimentation
	3.1 Working of algorithm
	3.2 Experimental Setup
	3.3 Execution of method
	3.4 Result and analysis

	4 Impact Of Agility Handling System
	5 Conclusion
	Acknowledgment
	References

